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Abstract
The boom of Internet of Things devices promotes huge volumes of eHealthcare data will be collected and aggregated at
eHealthcare provider. With the help of these health data, eHealthcare provider can offer reliable data service (e.g., k-NN
query) to doctors for better diagnosis. However, the IT facility in the eHealthcare provider is incompetent with the huge
volumes of eHealthcare data, so one popular solution is to deploy a powerful cloud and appoint the cloud to execute the k-
NN query service. In this case, since the eHealthcare data are very sensitive yet cloud servers are not fully trusted, directly
executing the k-NN query service in the cloud inevitably incurs privacy challenges. Apart from the privacy issues, efficiency
issues also need to be taken into consideration because achieving privacy requirement will incur additional computational
cost. However, existing focuses on k-NN query do not (fully) consider the data privacy or are inefficient. For instance, the
best computational complexity of k-NN query over encrypted eHealthcare data in the cloud is as large as O(k log3 N),
where N is the total number of data. In this paper, aiming at addressing the privacy and efficiency challenges, we design an
efficient and privacy-preserving k-NN query scheme for encrypted outsourced eHealthcare data. Our proposed scheme is
characterized by integrating the kd-tree with the homomorphic encryption technique for efficient storing encrypted data in
the cloud and processing privacy-preserving k-NN query over encrypted data. Compared with existing works, our proposed
scheme is more efficient in terms of privacy-preserving k-NN query. Specifically, our proposed scheme can achieve k-NN
computation over encrypted data with O(lk logN) computational complexity, where l and N respectively denote the data
dimension and the total number of data. In addition, detailed security analysis shows that our proposed scheme is really
privacy-preserving under our security model and performance evaluation also indicates that our proposed scheme is indeed
efficient in terms of computational cost.
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Introduction

With the boom of Internet of Things (IoT) devices, especially
the smart wearable/implantable body sensor devices,
huge volumes of eHealthcare data will be collected and
aggregated at the eHealthcare provider [5, 14]. With the
help of these nearly real-time health data, the eHealthcare
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provider can offer reliable data service to doctors for better
diagnosis, such as query service, recommendation service,
etc. [12, 13, 22]. In particular, the k-NN query service is
one of the most important applications in eHealthcare data.
For example, doctors can use the service to find the top
k patients who have the similar symptoms with a given
patient A, then the treatment history of these k patients
can provide some useful suggestions for the treatment of
the current patient A. However, as the volume, velocity,
and variety of the eHealthcare data increase significantly,
the IT facility in the eHealthcare provider is gradually
incompetent for storing and processing the huge volumes
of eHealthcare data. One popular solution is to outsource
the eHealthcare data to the cloud that is usually considered
to be powerful in both storage capacity and computing
capability. For example, Philips is building its healthcare
digital platform over Amazon Web Services, which can
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store and analyze 15PB patient data collected from studies,
medical records and patient inputs [1]. However, since
the eHealthcare data are very sensitive while the cloud
servers are not fully trusted [20], directly processing the
k-NN query over plaintexts eHealthcare data in the cloud
will bring many security and privacy issues. Although
the eHealthcare data privacy can be easily protected by
using cryptographic technology, this method brings many
efficiency challenges for processing the encrypted data. For
instance, the best computational complexity of k-NN query
over encrypted eHealthcare data in the cloud is as large as
O(k log3 N), where N is the total number of data [19] and
the computational complexity is based on the number of
operations over encrypted data.

Aiming at the privacy and efficiency challenges, in this
work, we propose a new efficient and privacy-preserving k-NN
query scheme for outsourced eHealthcare data by integrating the
kd-tree data structure with homomorphic encryption tech-
nique. Specifically, compared with our previous conference
version [23], themain contributions of this work are three-fold:

– First, we design a privacy-preserving kd-tree data
structure to efficiently store, insert and delete encrypted
eHealthcare data in the cloud.

– Second, we achieve efficient and privacy-preserving
k-NN query by introducing two privacy-preserving
protocols respectively for the encrypted data compari-
son and Euclidean distance computation in the cloud.
The computational complexity of our proposal is only
O(lk logN), where l is the data dimension and N is the
total number of eHealthcare data. Generally, the value
of l is smaller than 10, whileN is bigger than 1,000,000.
Thus, the computational cost of our proposal is less than
that of the best k-NN query scheme, i.e., O(k log3 N).

– Third, we conduct extensive simulations to evaluate the
efficiency of our proposed scheme, and the results show
that it is indeed efficient in terms of computational cost.

The remainder of this paper is organized as follows. We
first present our system model, security model and design

goals in “Models and design goals”. Some preliminaries are
introduced in “Preliminaries”. In “Our proposed scheme”,
our scheme is proposed. Security analysis and performance
evaluation are introduced in “Security analysis” and
“Performance evaluation” respectively. Related work is
discussed in “Related work”. Finally, we conclude this
paper in “Conclusion”.

Models and design goals

In this section, we present our system model, security
model, and identify our design goals in detail.

Systemmodel

In our system model, we consider a typical cloud-based k-
NN query service, which consists three kinds of entities,
i.e., a data owner (eHealthcare provider), a cloud with two
cloud servers CS = {S1, S2} and multiple users (doctors)
U = {U1, U2, · · · }, as shown in Fig. 1.

• Data owner: We consider an eHealthcare provider as
the data owner in our model, which has collected high
volumes of eHealthcare data. In order to make use of
these data, the eHealthcare provider intends to offer k-
NN query service to users. However, since he/she does
not have abundant storage and computational resources, the
eHealthcare provider deploys a powerful cloud to store data
and provide k-NN query service to users. As eHealthcare
data are usually sensitive, the eHealthcare provider tends
to encrypt these data before outsourcing them to the cloud.
In addition, when eHealthcare data gradually increase or
decrease as time goes, the eHealthcare provider is also
responsible for updating data in the cloud, such as inserting
new data or removing obsolete data.

• Cloud CS = {S1, S2}: In our model, the cloud is
deployed as a link to connect data owner and multiple users.
That is, he/she not only stores the outsourced data from
data owner, but also offers reliable and efficient k-NN query

Fig. 1 System model under
consideration

Data Owner
(eHealthcare Provider)

Outsource encrypted dataset

( )

CloudUsers (Doctors)

-NN Query

-NN Response



J Med Syst (2019) 43: 123 Page 3 of 13 123

service to the users. In particular, we deploy two servers
S1 and S2 in the cloud, both of them possess abundant
storage space and powerful computing capability, and will
cooperate together to provide k-NN query service to users.

• Users U = {U1, U2, · · · }: We consider doctors as
the users in our model and each user Ui ∈ U must be
authorized by the data owner before he/she enjoys the k-
NN query service. In other words, only authorized users can
receive and recover the k-NN query results from the cloud,
while unauthorized users cannot. Note that, in our model,
Euclidean distance is used to measure the distance between
two data records.

Security model

In our security model, we consider the data owner is honest,
i.e., he/she will honestly encrypt his/her data and outsource
them to the cloud. However, both cloud servers, S1 and
S2, are considered to be honest-but-curious, i.e., they will
faithfully store the outsourced data from data owner and
offer reliable k-NN query service to users, but may be
curious about some private information including the data
stored in the cloud and the query data records given by
authorized users. At the same time, S1 and S2 are not
allowed to collude with each other. This assumption is
reasonable since the cloud servers are usually companies
with high reputation. For the users, authorized users are
considered to be honest, while unauthorized users may
launch some malicious attacks in order to use the k-NN
query service from the cloud without authorization. Note
that, there may be other active attacks or passive attacks
occurring in the cloud, such as the data pollution attack and
deniable of service attack, which will be considered in our
future work.

Design goals

Our design goal is to present an efficient and privacy-
preserving k-NN query scheme for eHealthcare data. In
specific, the following objectives should be satisfied.

• Privacy preservation: The basic security requirement
of our proposed scheme is privacy preservation. That
is, the data, including those stored in the cloud and the
query data records given by authorized users, should be
kept secret from unauthorized entities, including both
cloud servers S1 and S2, and unauthorized users.

• Computation efficiency: In order to achieve the above
privacy requirement, additional computational cost
will be incurred. Specifically, processing k-NN query
over encrypted data in the cloud will consume more
computational resources compared with doing that in
plaintext data. Therefore, in our proposed scheme, we

aim to minimize the computational cost of the k-NN
query in the cloud.

Preliminaries

In this section, we briefly review the Paillier public key
encryption (PKE) scheme and the kd-tree technique, which
will serve as the building blocks in our proposed scheme.

The paillier PKE

The Paillier PKE (described in [15]) is a popular
homomorphic encryption technique and has been widely
used in privacy-preserving computation in recent years. It
consists of three algorithms, i.e., key generation KeyGen(κ),
encryption Enc(pk, m) and decryption Dec(sk, c).

– KeyGen(κ) : Given a security parameter κ ∈ Z+, large
prime numbers p, q, p′ and q ′ are randomly selected
such that p = 2p′ + 1, q = 2q ′ + 1 and |p| = |q| = κ .
Let n = pq and λ = lcm(p − 1, q − 1) = 2p′q ′. In
addition, define a function L(x) = x−1

n
and randomly

choose a generator g ∈ Z
∗
n2
. Then, let u = L(gλ mod

n2)−1 mod n and KeyGen(κ) outputs the public key
pk = (n, g) and private key sk = (λ, μ).

– Enc(pk, m) : Given the public key pk and a message
m ∈ Zn, the message m can be encrypted as c = E(m)

= gm · rn mod n2, where r ∈ Z
∗
n is a random number.

– Dec(sk, c) : Given the private key sk and a ciphertext
c = E(m), the message m can be recovered as m =
L(cλ mod n2) · μ mod n.

The Paillier PKE satisfies the following two homomorphic
properties.

– Homomorphic Addition: Given two ciphertexts E(m1)

and E(m2), we have E(m1) · E(m2) = E(m1 + m2).
– Homomorphic Multiplication:Given a ciphertextE(m1)

and a plaintext m2 ∈ Zn, we have E(m1)
m2 = E(m1 ·

m2).

The kd-tree technique

The kd-tree (described in [6]) is a kind of data structure,
which can efficiently deal with the nearest neighbor search
problem in multi-dimensional Euclidean space. In the
following, we first give the formal definition of the kd-tree,
and then introduce several algorithms related to the kd-tree.

Definition of kd-tree [6]: The kd-tree is a binary tree in
which each tree node is a k-dimensional data record.
In addition, each tree node x contains four attributes
cd, data, lef t and right , which denote the cutting



123 Page 4 of 13 J Med Syst (2019) 43: 123

dimension, the key value, the left child and the right
child, respectively. In order to facilitate the narrative,
we use x.cd , x.data, x.lef t and x.right to denote
the attributes of x, respectively. The kd-tree satisfies
order relation. In specific, for each tree node x, the
key value of x in the current cutting dimension x.cd is
larger than or equal to the key value of its left child
in x.cd , and less than the key value of its right child
in x.cd . That is, x.lef t .data[x.cd] ≤ x.data[x.cd] <

x.right .data[x.cd]. Next, we recall several algorithms
related to the kd-tree, i.e., tree building, insertion,
deletion, and k-NN query.

• Tree Building: Given a k-dimensional dataset D, a kd-
tree T can be built as the function BuildTree(·) in
Algorithm 1.

– First, compute data variance of all data records
in each dimension according to the dataset
S and choose the dimension with the largest
variance as the cutting dimension cd . Note
that choosing the dimension with the largest
variance as the cutting dimension can make
the built kd-tree more balanced. If the initial
dataset is empty and later data records are
inserted one by one, the built kd-tree may
be unbalanced and the k-NN query efficiency
will decrease. Thus, we recommend that data

owner should outsource large numbers of data
records in the initialization phase and small
numbers of data records are inserted one by
one.

– Second, compute the median value among all
data values in the cutting dimension cd , i.e.,
{x[cd]|x ∈ D}, and choose the data record
with the median value as the splitting data
record, denoted by s.

– Third, split D into two subsets Dl and Dr

according to the splitting data record s. For
each x ∈ D, if x[cd] ≤ s[cd], it will be put
into Dl . Otherwise, it will be put into Dr .

– Finally, create the tree root T with cd and s as
the cutting dimension and splitting data record,
respectively. After that, the left child and right
child of the root node can be recursively built
from Dl and Dr .

• Insertion: Give a k-dimensional data record x and a kd-
tree T , x can be inserted into T as the function Insert(·)
in Algorithm 1.

• Minimum Finding: Given a dimension i and a kd-tree
T , the function FindMin(·) in Algorithm 2 can be used
to find the data record with the smallest value in the i-th
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dimension. It is a recursive function, which starts from
the root node T and checks the cutting dimension of T

(i.e., T .cd). On the one hand, if T .cd == i, continue
to recurse on the left subtree because the smallest
value cannot be in the right subtree. In this case, if
T .lef t == null, the current data record (i.e., T .data)
is exactly the data record with the smallest value in the
i-th dimension. One the other hand, if T .cd �= i, the
smallest value could be in either left subtree or right
subtree, so continue to recurse on both subtrees.

• Deletion: The function Delete(·), as shown in Algo-
rithm 2, is used to delete a data record x from a kd-tree
T . It is a recursive function, which starts from the root
node T and checks the key value of T (i.e., T .data). If
T .data == x, delete this data record and return. Other-
wise, x could be in either left subtree or right subtree, so
continue to run the recursive algorithm on both subtrees
to find x and delete it.

• k-NN Query: The k-NN query is a popular searching
algorithm to find the k nearest neighbours with a given
data record x. A straight solution to achieve the kNN
query over a kd-tree is to traverse the whole tree, but it is
inefficient obviously. In order to improve the efficiency
of k-NN query, in this work, we adopt the Best Bin First
Search strategy (described in [3] in detail), which will
give a higher searching priority for those subtrees that
are more likely to contain the k nearest data records. For
instance, for a tree node T , if x[T .cd] ≤ T .data[T .cd],
the left subtree of T (i.e., T .lef t) is more likely to
contain the k nearest data records of x, compared with
the right subtree T (i.e., T .right). In this case, T .lef t

will have a higher searching priority. In addition, in
order to further improve the efficiency of kNN query,
we use a priority queue PQ with size k to store the
current top k closest data records with the query data
record x. At the same time, the data records in the
queue are stored in the descending order of distances
with the query data record x, i.e., PQ1 has the largest
distance with x. With the priority queue, a subtree T can
be pruned when it satisfies (x[cd] − T .data[cd])2 >

bestdist , i.e., it cannot contain any data records that are
closer than the data records in the queue. Based on the
Best Bin First Search strategy and the priority queue,
the k-NN query algorithm is presented in Algorithm 3.

Our proposed scheme

In this section, we present our proposed k-NN query
scheme. Before delving into the details, we first introduce
a monotonically increasing and one-way function, which
will serve as the building block of our proposed scheme for
privacy preservation.

Themonotonically increasing and one-way function

Suppose that D = {x = (x1, x2, · · · , xl)|xi ∈ Z+ and xi ≤
U, i = 1, 2, · · · , l} is an l-dimensional dataset, where U is
the upper bound of all data values in D. At the same time,
let DS = {dist2(x, y) = ∑l

i=1(xi − yi)
2|x, y ∈ D} denote

a set of Euclidean distances, which contains the distance of
any two data records inD. Then, we can construct a function
f , which maps each element d2 ∈ DS to f (d2). In specific,
for each d2 ∈ DS, f (d2) is

f (d2) = a1(d
2 mod �)+a2(d

2 mod �)2+· · ·+an(d
2 mod �)n+e

where � = l · U2, each coefficient ai is an integer and
ai > �i for i = 1, 2, · · · , n. In addition, e is a noise and
randomly chosen from (�, a1 + a2 + · · · + an).

Next, we will prove that the function f is not only a mono-
tonically increasing function, but also a one-way function.

Theorem 1 (Monotonically Increasing Function) The
function f is a monotonically increasing function. That is,
for any d2

1 , d
2
2 ∈ DS, if d2

1 > d2
2 , f (d2

1 ) > f (d2
2 ).

Proof For any d2
1 , d

2
2 ∈ DS, suppose that d2

1 > d2
2 and

f (d2
1 ) = a1(d

2
1 mod �) + · · · + an(d

2
1 mod �)n + e1 (1)

f (d2
2 ) = a1(d

2
2 mod �) + · · · + an(d

2
2 mod �)n + e2 (2)

where � = l · U2, and e1, e2 are randomly chosen from
(�, a1 + · · · + an). For any x, y ∈ D, dist2(x, y) =∑l

i=1(xi − yi)
2. Since xi ∈ Z+, yi ∈ Z+, and they satisfy
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xi ≤ U and yi ≤ U for i = 1, 2, · · · , l, we can obtain that
dist2(x, y) ∈ Z+ and

1 ≤ dist2(x, y) ≤ l · U2 � � (3)

Since DS is a set of Euclidean distances, which contains the
distance of any two data records in D, thus any d2 ∈ DS

satisfies that d2 ∈ Z+ and 1 ≤ d2 ≤ �. Thus, 1 ≤ d2
1 ≤ �,

1 ≤ d2
2 ≤ � and we have

d2
1 mod � = d2

1 , d2
2 mod � = d2

2 (4)

In this case, the result of Eqs. (1) – (2) is
f (d2

1 )−f (d2
2 )=a1(d

2
1 −d2

2 )+· · ·+an((d
2
1 )n−(d2

2 )n)+(e1−e2) (5)

In addition, we have d2
1 ∈ Z+, d2

2 ∈ Z+ and d2
1 > d2

2 , so
d2
1 − d2

2 ≥ 1. Hence, for any 1 ≤ i ≤ n, (d2
1 )

i − (d2
2 )

i ≥ 1
always holds. Then, we have

f (d2
1 ) − f (d2

2 ) ≥ a1 + a2 + · · · + an + (e1 − e2) (6)

Since e1, e2 ∈ (�, a1 + · · · + an), it is easy to obtain that

� − (a1 + · · · + an) < e1 − e2 < (a1 + · · · + an) − � (7)

and

f (d2
1 ) − f (d2

2 ) ≥ a1 + a2 + · · · + an + (e1 − e2) > 0 (8)

Therefore, for any d2
1 , d

2
2 ∈ DS, if d2

1 > d2
2 , f (d2

1 ) > f (d2
2 )

holds. In other words, f is a monotonically increasing
function.

Theorem 2 (One-way Function) The function f is a one-
way function, i.e., it is infeasible to recover d2 from f (d2)

for any d2 ∈ DS.

Proof For any d2 ∈ D, we have
f (d2) = a1(d

2 mod �)+a2(d
2 mod �)2+· · ·+an(d

2 mod �)n+e (9)

where e is a noise and randomly chosen from (�, a1 +
· · · + an). If an attacker attempts to recover d2 from f (d2),
he/she must first recover the coefficients {a1, a2, · · · , an}.
Two attack methods can be considered to recover
{a1, a2, · · · , an}, i.e., Lagrange interpolation attack and
modular operation attack. However, the function f can
resist both of them, i.e., modular operation attack or
Lagrange interpolation attack are invalid to recover the
coefficient {a1, a2, · · · , an} as discussed below.

• The function f can resist modular operation attack. An
attacker may try to use modular operation to recover
ai from a data pair (d2, f (d2)), where f (d2) =
a1(d

2 mod �) + · · · + an(d
2 mod �)n + e. On the one

hand, the attacker can obtain e mod d2 by computing
f (d2) mod d2 ≡ e mod d2. However, e is randomly
chosen from (�, a1 + · · · + an) and e > � > d2, so
e > d2 and attacker cannot deduce e from e mod d2.
On the other hand, if (d2 mod �)n is big enough to

satisfy: (i) (d2 mod �)n > an; (ii) (d2 mod �)n >∑n−1
i=1 ai(d

2 mod �)i + e, an can be recovered by

f (d2)

(d2 mod �)n
= a1(d

2 mod �)+···+an(d2 mod �)n+e

(d2 mod �)n

=
∑n−1

i=1 ai (d
2 mod �)i+e

(d2 mod �)n
+ an

= an

(10)

However, as described in the definition of f , an > �n.
At the same time, it is obvious that (d2 mod �)n <

�n, so (d2 mod �)n < an and (d2 mod �)n cannot
satisfy conditions (i), let alone condition (ii). Thus,
the attacker cannot recover these coefficients by the
modular operation attack.

• The function f can resist Lagrange interpolation
attack. According to the Lagrange interpolation for-
mula, recovering n unknown coefficients {a1, a2,
· · · , an} requires at least n data pairs like (d2, f (d2),
where d2 ∈ DS. Without loss of generality, assume that
the attacker has collected such kind of dataset, denoted
by DA = {(d2

i , f (d2
i ) = ∑n

j=1 aj (d
2
i mod �)j +

ei)|d2
i ∈ DS, 1 ≤ i ≤ n}. Then, the attacker will

try to recover the coefficients of f using the Lagrange
interpolation formula. However, during the process of
running formula, he/she will find that he/she has no idea
on these randomly chosen noises {e1, e2, · · · , en}. In
addition, based on the above discussion, it is difficult
for him/her to obtain them.Without these noises {e1, e2,
· · · , en}, the Lagrange interpolation formula does not
work, so the attacker cannot recover these coefficients
by the Lagrange interpolation attack.

Therefore, both modular operation attack and Lagrange
interpolation attack are invalid to recover the coefficient
{a1, a2, · · · , an}, let alone recovering d2 from f (d2). In
addition, even if the attacker has obtained the coefficients
{a1, a2, · · · , an}, it is still difficult for him/her to solve the
equation f (d2) = a1(d

2 mod �)+· · ·+an(d
2 mod �)n+e

without knowing the random noise e. Thus, an attacker
cannot recover d2 from f (d2) from any d2 ∈ DS, so the
function f is a one-way function.

Note that choosing the degree of function f , i.e., n,
we need to consider both security and efficiency issues.
As n increases, the computational efficiency of function f

will decrease. Thus, an optimal n can be chosen according
to the security and efficiency requirements in the specific
scenarios.

The description of our proposed scheme

Now, we present our proposed scheme, which is comprised
of four phases: system initialization, outsourcing encrypted
data to the cloud, maintaining encrypted data in the cloud,
and k-NN query over encrypted data.
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System initialization

In our scheme, we consider the trusted data owner
(eHealthcare provider) bootstraps the whole system. In
specific, given the security parameter κ, α, β, where α +
β << κ , the data owner can generate the public key
pk = (n, g) and private key sk = (λ, μ) according to
the keyGen(κ) algorithm in “The paillier PKE”. In addition,
data owner randomly selects ak as the access key and
chooses AES algorithm as the basic encryption algorithm.
Then, it will publish the public key pk, and distribute the
private key sk to cloud server S2. At the same time, it also
sends the access key ak to each authorized user. Note that
the Paillier PKE can only encrypt and decrypt integers, thus
data owner will convert all data into integers in the same
way before encrypting them. Without loss of generality, we
assume that all of the plaintext data in our scheme belong to
{0, 1}α , including the Euclidean distance.

Outsourcing encrypted data to the cloud

Assume that data owner has an l-dimensional eHealthcare
dataset D = {(x1, x2, · · · , xl)|xi ∈ {0, 1}α, 1 ≤ i ≤ l}.
After system initialization, he/she will encrypt his/her data
and outsource them to the cloud as follows.

– Step-1: Build an ld-tree for the dataset D using the
function BuildTree(·) in Algorithm 1.

– Step-2: Encrypt the built ld-tree, i.e., encrypting the
key value of each tree node. Specifically, for the
key value of each tree node x = (x1, x2, · · · , xl),
the data owner first uses the Paillier PKE to encrypt
(x1, x2, · · · , xl) as (E(x1), E(x2), · · · , E(xl)), and
then uses the AES algorithm to encrypt the whole

record x as AESak(x). Then, the key value becomes
E(x) = (E(x1), E(x2), · · · , E(xl),AESak(x)).

– Step-3:Outsource the encrypted ld-tree to cloud server S1.

Maintaining encrypted data in the cloud

After the encrypted ld-tree is outsourced to the cloud, data
owner maintains the ld-tree in the cloud by either inserting
a new record or deleting an obsolete one.

Insertion Data owner can insert a new data record x =
(x1, x2, · · · , xl) into the encrypted ld-treewith the help of two
cloud servers S1 and S2. First, he/she sends the encrypted
record E(x) = (E(x1), E(x2), · · · , E(xl),AESak(x)) to
S1. Then, S1 insertsE(x) to the encrypted ld-tree by running
the function Insert(·) in Algorithm 1. Since S1 cannot access
the plaintext ld-tree, he/she will face two challenges when
running the algorithm: i) how to check x == t .data; and
ii) how to compare x[T .cd] < T .data[T .cd]. Luckily,
since the AES algorithm is a deterministic encryption, S1
can check AESak(x) == AESak(T .data) for solving the
first challenge. For solving the second challenge, S1 and S2
can run the privacy-preserving data comparison protocol, as
shown in Fig. 2.

Deletion Data owner can delete an obselete data record
x = (x1, x2, · · · , xl) from the encrypted ld-tree with the
help of two cloud servers S1 and S2. First, he/she sends the
encrypted data record E(x) = (E(x1), E(x2), · · · , E(xl),

AESak(x)) to S1. Then, S1 deletes E(x) from the encrypted
ld-tree according to the deletion algorithm described in the
Algorithm 2. During the deletion process, S1 faces the same

Fig. 2 Privacy-preserving data
comparison protocol run
between S1 and S2
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challenges as that in the Insertion process, and S1 can use
the same strategies to deal with the two challenges.

k -NN query over encrypted data

AuserUi ∈ U can query the k nearest data recordswith a given
data record y = (y1, y2, · · · , yl) as the following steps.

– Step-1: Ui first encrypts the query data record y as
E(y) = (E(y1), E(y2), · · · , E(yl)) using Paillier PKE
algorithm.

– Step-2: Ui sends the k-NN query request together with
encrypted query data record E(y) to the cloud server S1.

– Step-3: On receiving the query request from Ui , S1
first checks whether he/she is authorized. If not, drop
the current query request and finish. Otherwise, S1 will
continue with the following steps.

– Step-4: S1 cooperates with S2 to search the k nearest
data records on the encrypted ld-tree according to the
k-NN query algorithm (see Algorithm 3). Similarly,
any two encrypted data comparison can be processed
by running the privacy-preserving data comparison
protocol, as shown in Fig. 2. However, apart from
encrypted data comparison, S1 will face another
challenge: how to compute Euclidean distance for
two encrypted data records. Aiming at this challenge,
we design a privacy-preserving Euclidean distance
computation protocol by integrating the permutation
technique with a monotonically increasing and one-way
function f (described in “The monotonically increasing
and one-way function”), as shown in Fig. 3. With these
two protocols, S1 is able to obtain the k nearest data
records of the query data record E(y) with the help
of S2. At the same time, as described in Algorithm 3,
the query results (i.e., k nearest data records) are stored

in the priority queue PQ = {PQ[i] = E(x) =
(E(x1), E(x2), · · · , E(xl), AESak(x))|1 ≤ i ≤ k}.

– Step-5: S1 returns the query results {AESak(x)|E(x) ∈
PQ} to Ui .

– Step-6: On receiving the query results, the authorized
user Ui uses the access key ak to recover the k nearest
data records.

Security analysis

In this section, we analyze the security of our proposed
scheme. We particularly focus on the privacy property, i.e.,
the data including those stored in the cloud and the query
data records given by authorized users should be privacy-
preserving. In other words, these data will not be leaked
to unauthorized entities including S1, S2 and unauthorized
users, when they are stored in the cloud and processed by the
cloud servers. Since the encryption technique, the encrypted
data comparison protocol and the Euclidean distance
computation protocol are the three significant techniques
to support the privacy property (i.e., data privacy) of our
scheme, the privacy preservation of our scheme can be
achieved once all of them are privacy-preserving. Next,
we analyze the security of these three techniques.

• The Encryption Technique is Privacy-Preserving: In
our scheme, all data records outsourced by data
owner or authorized users is encrypted by the Paillier
PKE technique or AES algorithm. The security of
these two algorithms guarantees that any unauthorized
entity including S1, S2 and unauthorized users cannot
obtain the data content from encrypted data. Thus, the
encryption technique is privacy-preserving.

Fig. 3 Privacy-preserving
Euclidean distance computation
protocol run between S1 and S2
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• The Encrypted Data Comparison Protocol is Privacy-
Preserving: The data comparison protocol run between
S1 and S2, as shown in Fig. 2, is a basic component
for the insertion, deletion, and k-NN query algorithm
in our proposed scheme. In the protocol, S2 returns one
comparison result of two encrypted data E(a) and E(b)

to S1 each time. Thus, S1 cannot obtain the data a and
b from the data comparison protocol. At the same time,
S1 uses the homomorphic property to blind the data,

i.e., (
E(a)
E(b)

)r
encrypt−−−−→ E(r(a − b)) and sends it to S2.

Although S2 can recover r(a − b) from E(r(a − b))

with his/her private key sk and obtain the comparison
result from the length of r(a − b), he/she also has no
idea on a and b due to the blind factor, i.e., random
number r . Thus, both S1 and S2 cannot obtain the data
content a or b during the data comparison protocol.
Similarly, unauthorized users also cannot. Therefore,
the data comparison protocol is privacy-preserving.

• The Euclidean Distance Computation Protocol is
Privacy-Preserving: The Euclidean distance compu-
tation protocol is a critical component in the k-NN
query algorithm and run between S1 and S2. As
shown in Fig. 3, in the protocol, when computing the
Euclidean distance between E(x) and E(y), S1 first
computes (E(x1 − y1), E(x2 − y2), · · · , E(xl − yl)) �
(c1, c2, · · · , cl). Then, he/she applies data permutation
strategy to (c1, c2, · · · , cl) before sending it to S2. If
there is no permutation, S2 can use his/her private key
sk to recover (x1 − y1, x2 − y2, · · · , xl − yl), i.e, x − y,
after receiving (c1, c2, · · · , cl). At this time, if S2 has a
chance to get x (or y), the other one, i.e., y (or x) will
be disclosed. Therefore, in our scheme, the permutation
technique is applied to prevent the above attack. With
the permutation technique, even if S2 knows x and each
permutated distancemi = xi−yi forE(x) andE(y), S2
can correctly recover y only with probability 1

l! . When
l = 10, the probability is only 1

3,628,800 . Besides, in
our scheme, each data record has been encrypted, the
security of the encryption algorithm guarantees that it
is difficult for S2 to get any data record. Therefore, in
the Euclidean distance computation protocol, S2 cannot
obtain data content x or y from encrypted data.

At the same time, S2 returns f (dist2(x, y)) instead of
dist2(x, y) to S1 when computing Euclidean distance between
two encrypted data records E(x) and E(y). As discussed in
“The monotonically increasing and one-way function”, the
function f is a one-way function, so it is impossible for S1
to recover dist2(x, y) from f (dist2(x, y)). If there is no
function f and S2 directly returns dist2(x, y) to S1, S1 is
likely to recover the data content from a set of encrypted
data records by running the Euclidean distance computation
protocol. In specific, suppose that S1 has n data records,

then he/she has l × n unknown numbers because each
encrypted data record is l-dimensional. In addition, S1 could
obtain at most n(n−1)

2 distances by running the Euclidean
distance computation protocol for any two encrypted data
records. When l × n ≤ n(n−1)

2 , i.e., 2 × l + 1 ≤ n, it is

possible for S1 to solve l×n unknown numbers from n(n−1)
2

equations and further obtain the data content of these n data
records. Thus, in our scheme, the function f is applied to
prevent the above attack. With the one-way function f , S1
cannot recover d2 from f (d2), let alone the data content. As
a result, in the Euclidean distance computation protocol, S1
cannot obtain the data content from encrypted data.

From the above analysis, we can know that both S1 and
S2 cannot obtain any data content from the Euclidean distance
computation protocol. Similarly, unauthorized users also can-
not. Therefore, the Euclidean distance computation protocol
is privacy-preserving.

Performance evaluation

In this section, we evaluate the performance of our proposed
scheme in terms of computational cost. The evaluation
includes theoretical analysis and experimental analysis.

Theoretical analysis

In this subsection, we theoretically analyze the performance
of our proposed scheme in terms of computational cost. In
specific, we analyze the computational complexity for each
kind of entity, i.e., data owner, cloud servers (S1 and S2),
and users in our proposed scheme.

For the data owner, the computational complexity comes
from two aspects, i.e., i) building and encrypting the ld-tree
in the Outsourcing Encrypted Data to the Cloud phase and
ii) encrypting the updated data record in the Maintaining
Encrypted Data in the Cloud phase. Suppose that the initial
dataset of data owner contains N data records and each of
them is l-dimensional. Then, in the Outsourcing Encrypted
Data to the Cloud phase, building an ld-tree for the initial
dataset requires O(l × N) computational complexity and
encrypting these N data records requires O(l × N × logN)

computational complexity. Note that the computational cost
in the Outsourcing Encrypted Data to the Cloud phase can
be negligible since it happens only once. In theMaintaining
Encrypted Data in the Cloud phase, data owner needs
to encrypt an l-dimensional updated data record, and as
described in 4.2, encrypting one data record requires O(l +
1) computational complexity.

For the cloud server S1 and S2, the computational cost
comes from the insertion, deletion and k-NN query, where
the computational complexity of insertion is the same as
that of deletion, i.e., O(logN). However, in the k-NN query
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phase, the average computational complexity is O(l × k ×
logN) according to the Algorithm 3. As a result, the average
computational complexity for the cloud is O(l×k× logN).

For each user Ui ∈ U , as described in 4.2.4, when
sending a k-NN query request to the cloud server S1, Ui

needs to encrypt an l-dimensional query data record, which
requires O(l) time complexity. In addition, on receiving
the k-NN query results, he/she needs to use the access
key ak to recover the query results, which requires O(k)

computational complexity. As a result, the computational
complexity at the end of the user is O(l + k).

Experimental analysis

In this subsection, we experimentally evaluate the perfor-
mance of the proposed scheme in term of the computational
cost from the perspective of the data owner and the cloud
respectively. We have implemented our proposed scheme in
Java and conduct experiments on a Windows machine with
Intel(R) Core(TM) i7-3770 CPU @3.40GHz processor and
16GB RAM. In our experiment, we set κ = 512, α = 256
and β = 128, thus |p| = |q| = 512 and |n| = 1024. At
the same time, we set the length of the access key is 128
bits, i.e., |ak| = 128. In addition, we evaluate our proposed
scheme on three synthetic datasets with uniform distribution
and counts of these datasets are 1000, 10000 and 100000,
respectively. We run our experiment for multiple times and
the average results are reported.

• Computational Cost at Data Owner: The computational
cost at the data owner consists of two components, i.e.,
building and encrypting the ld-tree in the Outsourcing
Encrypted Data to the Cloud phase, and encrypting

the updated data record in the Maintaining Encrypted
Data in the Cloud phase. Since encrypting the ld-
tree and updating encrypted data in the cloud are
based on one data record encryption. Thus, we mainly
discuss the computational cost of building an ld-tree
and encrypting one data record.

First, Fig. 4a presents the the runtime of building
an ld-tree varying with the number of data records
N and the data dimension l. From Fig. 4a, we can
see that the runtime of building an ld-tree greatly
increases with the total number of data records N for
a fixed data dimension l. For example, when l is equal
to 6, the runtime of building tree is about 0.76 ms,
10.97 ms and 154.7 ms, respectively. A similar trend
can be found in the relationship between the runtime
of building ld-tree and the data dimension l, but the
growth is slower. Overall, the running time of building
an ld-tree increases with the total number of data
records and the data dimension.

Second, for the data record encryption, the compu-
tational cost is about 2 × l exponentiation and l multi-
plication operations in Zn2 and one AES operation. We
take the synthetic dataset of size 1000 as an example
to evaluate the relationship between the encryption time
and data dimension, as shown in Fig. 4b. From Fig. 4b,
we can see that the encryption time linearly grows with
the data dimension. For example, the encryption time is
almost 22.8 ms, 33.8 ms and 45.7 ms with dimension
l = 4, l = 6 and l = 8, respectively.

• Computational Cost at Cloud Servers: We consider
the computational cost of both cloud servers S1 and
S2, which is comprised of two components, i.e.,
maintaining the encrypted ld-tree including insertion

N = 1000 N = 10000 N = 100000
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Fig. 4 Experimental results at the data owner
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and deletion, and processing the k-NN query requests
from authorized users.

– The computational cost of maintaining the encrypted
ld-tree: The ld-tree updating includes insertion and
deletion. The theoretical complexity of insertion and
deletion is the same, i.e, O(logN), so we just evaluate
the runtime of deletion varying with the total number
of data records (i.e., N) and the data dimension (i.e.,
l), as shown in Fig. 5a. From Fig. 5a, we can see that
the runtime of deletion logarithmically grows with the
number of data records N . For instance, when l = 6,

the average runtime of deletion are 76.73 ms, 99.38
ms and 119.1 ms with respect to N = 1000, 10000,
100000. However, there is no obvious difference in the
runtime of deletion among different data dimensions for
the same dataset.

– The computational cost of k-NN query: The k-NN
query complexity comes from searching the k-nearest
neighbours for a given data record and the theoretical
complexity of the k-NN query is O(lk logN). Next, we
evaluate the k-NN query complexity by three synthetic
datasets and consider three different cases, i.e., k =
10, k = 20 and k = 30 as shown in Fig. 5b, c
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and d respectively. These three figures have the same
characteristics and show that the average runtime of
k-NN query linearly grows with the data dimension
when fixing the total number of data records N and
also logarithmically increases with N when fixing data
dimension l. In addition, the runtime of k-NN query
shows an increasing trend with the increase of k value.
For instance, when N = 10000 and l = 6, the runtime
of k-NN query is about 2506 ms, 3257 ms and 4286 ms
with respect to k = 10, 20, and 30 respectively.

Related work

In this section, we briefly review some related works
regarding the privacy-preserving k-NN query. First, k-NN
query is a fundamental problem in various areas, such
as data mining, pattern recognition, similarity search and
so on. Overall, there are two strategies to address this
problem. According to whether the data is encrypted or
not, strategies are divided into centralized methods and
distributed methods. Some existing data distributed methods
to achieve secure k-NN query [7, 16, 17] can only process
the data in plaintext format, and cannot process query
service over encrypted data. For this reason, we here only
consider the centralized model.

In the centralized model, data are outsourced to an
untrusted cloud server without encryption. The data owner
is responsible for managing the data and offering some
query service (e.g. k-NN) to the trusted clients. Due to the
involvement of the untrusted server, security issues arise,
especially for the data privacy. To solve this problem, data
anonymization models or cryptographic techniques should
be adopted to protect the data security. For example, data is
encrypted before outsourced to the cloud.

Encryption is a good approach to protect data privacy.
However, how to process the query problem on encrypted
data becomes a new challenge, as it is not so straight as
the operation in the plaintext data. In the literature, there
are various research results on range query [2, 9, 10] and
aggregation query [8] for encrypted data. Since k-NN query
is one of the most important applications in eHealthcare
data, we focus on discussing k-NN query over encrypted
data in this work.

Aiming at addressing the k-NN query problem, different
techniques have been proposed [4, 11, 18, 19, 21]. A novel
encryption scheme was proposed byWong et al. [18]. In this
scheme, the scalar product between the query vector and
any tuple vector from database for distance comparison is
preserved and the data owner adopted different encryption
algorithms for data and query. Zhu et al. [24] improved
the scheme of Wong et al. to provide privacy-preserving

k-NN query. However, the data owner has to participate
in the query process and the scheme lacks a rigorous
security proof. Hu et al. [11] proposed a k-NN query scheme
based on privacy homomorphism encryption scheme. In
their scheme, the k-NN query on the encrypted data is
achieved by homomorphic properties. However, Yao et al.
[21] pointed out that both schemes in [11, 18] cannot resist
chosen-plaintext attacks, and thus they proposed a new
scheme based on partition-based secure Voroni diagram.
Elmehdwi et al. [4] designed a homomorphic encryption
based k-NN query scheme over encrypted data. Although
the data owner and the client achieve the privacy, the
computation and communication overheads are not very
efficient. Recently, Xu et al. [19] also proposed a scheme
with the sublinear computational complexity during the k-
NN query process. They achieved k-NN computation over
encrypted data by using the garbled circuit between two
non-colluding cloud servers. Different from Xu et al.’s
scheme, our proposed scheme computes k nearest neighbors
over encrypted data by designing privacy-preserving data
comparison protocol and Euclidean distance computation
protocol.

Conclusion

In this paper, we have proposed a new efficient and
privacy-preserving k-NN query scheme over encrypted
eHelathcare data in the cloud by integrating kd-tree and
homomorphic encryption techniques. The proposed scheme
achieves the following two characteristics i) efficient storing
encrypted data in the cloud and ii) privacy-preserving k-
NN query over encrypted data. Specifically, two privacy-
preserving protocols for data comparison and Euclidean
distance computation are introduced for the proposed
scheme. Security analysis shows that our proposed scheme
is privacy-preserving. In addition, performance evaluation
also indicates that our proposed scheme is efficient in terms
of computational complexity. In our future work, we will
evaluate the proposed scheme on real eHealthcare datasets.
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